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Abstract. A means of correcting total energy pseudopotential calculations performed using 
a fixed cut-off energy for the plane waves in the basis set is presented. The use of a finite set 
of special k-points in such a calculation will introduce errors in the total energies which 
decrease only slowly with increasing cut-off energy. In particular, total energy differences 
are not accurate unless the cut-off energy used is sufficiently large that the total energies are 
themselves converged. This would not be the case if a truly constant cut-off energy could be 
used. Unfortunately this can only be achieved by using an infinite k-point set. We have 
derived a correction which will explicitly eliminate these errors to give total energies which 
can correspond to a strictly constant cut-off energy. In this way, total energy differences 
and hence many physical properties can be accurately calculated using cut-off energies 
significantly lower than otherwise possible, with substantial savings in computational time. 

1. Introduction 

Total energy pseudopotential calculations can be used to determine a wide variety of 
physical properties of materials. Calculations are performed on periodic supercells 
thereby allowing the electronic wavefunctions to be expanded in terms of a discrete set 
of plane waves at each of an infinite set of k-points in the Brillouin zone. This in turn 
allows the application of the following two approximations. Firstly, a small number of 
carefully chosen k-points can be used to accurately represent the wavefunction at all k- 
points (Chadi and Cohen 1973, Monkhorst and Pack 1976), and secondly, by truncating 
the basis set the wavefunctions at each k-point can be expanded in terms of a finite basis 
set. In principle by increasing the number of k-points and the size of the basis set it is 
possible to achieve absolute energy convergence. However, even in the case of very 
small systems, this proves to be extremely computationally expensive. In order to 
perform calculations on larger, more complex systems it is necessary to be able to use 
smaller plane wave basis sets at each k-point without reducing the accuracy of the 
calculation. 

It is known that differences in the total energies of systems of the same size can be 
accurately calculated for numbers of plane waves and of k-points very much smaller 
than those required to ensure convergence of the absolute energies provided that 
identical basis sets are used for each calculation (Cheng et a1 1988). However, when 
computing energy differences between systems of varying size it is impossible to use 
identical plane wave basis sets unless an infinite number of k-points are used in the 
calculation. We must choose instead either to use a constant number of plane waves in 
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Figure 1. The 20-atom unit cell of germanium used in the calculation. The darker atoms and 
dashed lines define the conventional FCC unit cell when lattice parameters c and c _  take the 
experimental equilibrium values. 

the basis set or a constant kinetic energy cut-off for the plane wave basis set. The latter 
is considered to be the more physical and to have better convergence properties (Dacosta 
et a1 1986). However when used with a finite number of k-points this truncation of the 
basis set introduces discontinuities in total energies whenever the number of plane waves 
used changes abruptly. The purpose of this paper is to illustrate how these systematic 
discontinuities and associated errors in the total energy can be dealt with straight- 
forwardly. The technique to be described here is primarily one of correcting total 
energies for the errors due to the use of finite k-point sets in finite cut-off energy 
calculations. It will be shown that physical properties can then be determined from 
calculations employing severely reduced basis sets, rather than having to make basis sets 
sufficiently large that the discontinuities are effectively eliminated. Previous attempts 
to reduce these errors have been made by Yin (1985) and by Denteneer and van 
Haeringen (1986) but these, in the light of the present work, represent somewhat 
unsatisfactory approaches. This work uses perfect bulk germanium as an illustrative 
example. A unit cell containing twenty atoms will be used for the calculations. We 
consider the total energy as a function of one lattice parameter so that a total energy 
curue can be explored, allowing comparison of equilibrium lattice constants and elastic 
moduli with experimental values. 

In sections 2 and 3 we describe the detailed effects of truncation of the plane wave 
basis set on stress and total energy calculations respectively. We proceed in section 4 to 
illustrate how a quantitative knowledge of these effects leads to improved convergence 
of calculated physical properties with increasing cut-off energy. Finally, we present our 
conclusions in section 5. 

2. Stress calculations 

The twenty-atom cell of Ge used for the calculations is shown in figure 1. We have 
simultaneously computed the stress a(c) and the total energy per unit cell Etot(c) as we 
vary the single lattice parameter c in the [loo] crystallographic direction while keeping 
the other two lattice parameters (c,) fixed. The calculations were performed using an 
ab initio, norm-conserving local pseudopotential (Starkloff and Joannopoulos 1977) and 
the local density approximation with the density-functional theory. The Perdew and 
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Figure 2. The quantum-mechanical stress 
determined as a function of lattice par- 
ameter, using E,,, = 125eV and 14 
equally weighted k-points. Curve ( a )  
shows the calculated (uncorrected) stress. 
Curve (6) shows the stress corrected by 
adding a constant Pulay stress. Curve (c) 
shows the stress corrected by adding a 1/c 
Pulay stress. 

Zunger (1981) parametrisation of the Ceperley and Alder (1980) form of the exchange- 
correlation potential was employed. The value of c, was first determined as that cor- 
responding to the total energy minimum under isotropic volume strain. Figure 2 shows 
the calculated stress as a function of lattice parameter. 

The calculation of the quantum-mechanical stress at each value of the lattice constant 
was performed using a locally constant number of plane waves per k-point, cor- 
responding to a fixed cut-off energy E,,, = 125 eV and 14 equally weighted k-points. 
The plane wave Ik + G) will be included in the basis set for k-point kif 

The number of such states included in the basis set for k-point k will be denoted 
NLw(c, E,,,). If k-point k carries a weightingf, then we will define a weighted number 
of basis states as 

(h2/2m,) lk + GI2 S E,,,. (1) 

Elementary considerations of the average density of states in G-space give the approxi- 
mate relation 

N P W ( C )  = g,c (3) 

g, = (c: /6n2)  (2me/fi2)3'2E2zx. (4) 

where 

However, this expression takes no account of the discrete nature of Npw inherent in a 
finite k-point set calculation. Figure 3 shows the fluctuations in the actual NPw(c) curve 
for the 20-atom unit cell using E,,, = 125 eV and 14 equally weighted k-points about 
the continuum limit expression (3). While the number of plane waves NPW(c, E,,,) is 
well-defined for given E,,, via equations (1) and (2), the discrete nature of NPW(c) 
means that E,,, is not well-defined for given Npw. The total energy is assumed to be a 
differentiable function of lattice parameter and cut-off energy in a calculation employing 
a complete k-point set. In the case of a finite k-point set we must define a strictly constant 
well-defined cut-off energy Emax(c, Npw) according to equations (3) and (4). We can 
then distinguish the calculated stress a(c) corresponding to locally constant Npw and the 
corrected stress corresponding to strictly constant E,,,. 
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Figure 3. The ratio of the actual number of plane 
waves in the basis set to the corresponding number 
in the continuum limit, using E,,, = 125 eV and 
14 equally weighted k-points, determined as a 
function of the lattice parameter. The fluctuations 
in the plotted ratio around unity are only of the 
order of 0.2% but this leads to significant errors 
in the calculated total energies. 
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Figure 4. The convergence of total energy with 
increasing cut-off energy E,,, for a value of lattice 
parameter close to the equilibrium value. 

We will define the difference between these stresses as the 'Pulay stress' oPulav(c), by 
analogy with the Pulay force (Pulay 1969). It has been shown (Froyen and Cohen 1986, 
Vanderbilt 1987) that 

opulay(C, E m a x )  = - (a~t , t (c> Emax)/ac)E,,, + (aEtot(c, N ~ ~ ( c ,  E m a x ) ) / a c ) N P w  ( 5 )  

= ( a E m a x ( N P W ,  c ) / a ~ ) ~ p w  (aEtot(c, E m a x > / a E m a x > ) c  

= - ( 2 ~ m a x / 3 c )  (aEtot(c7 E m a x ) / a E m a x ) c  

f - ( 2 ~ m a x / 3 c )  (aEtot(c, E m a x ) ) / a L a x ) c  (6) 
where the final approximation is valid to within the other uncertainties of the calculation. 
In this form the value of the Pulay stress can be calculated explicitly for all values of c by 
calculating the change of E,,, with increasing In E,,,. Figure 4 shows a logarithmic plot 
of E,,, as a function of E,,, for a typical lattice parameter. Since the total energy is a 
monotonically decreasing function of cut-off energy the Pulay stress is a positive tensile 
stress. oPulay will only vanish when E,,, is sufficiently large that absolute total energy 
convergence is achieved. However the c dependence of dE,,,/a In E,,, diminishes with 
increasing E,,,, with the Pulay stress becoming inversely proportional to c when total 
energy differences have converged. With E,,, = 125 eV calculated total energy dif- 
ferences have not converged, but (copulay(c)) is nevertheless constant to within about 
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Table 1. The comparison of equilibrium properties determined from the behaviour of the 
quantum-mechanical stress, as a function of the lattice parameter c, with the experimental 
values. The stresses were calculated using E,,, = 125 eV and 14 equally weighted k-points, 
and were corrected by including a Pulay term. The experimental data is from Landolt- 
Borstein (1982). 

Equilibrium Equilibrium 
lattice constant Young modulus 

Method (-4 (GPa) 

Experiment 5.65 131 
Calculated stress 4.89 t 0.01 99 t 2 
1/c corrected stress 5.56 t 0.01 127 t 2 
Constant corrected stress 5.67 t 0.01 112 t 2 

1%. Figure 2 shows the stress obtained by correcting the calculated stress with the l /c  
Pulay term of equation (6). Table 1 compares the equilibrium properties thus obtained 
with their experimental values. It is clear that the inclusion of this correction yields 
physical properties much closer to the experimental values than is otherwise possible at 
this cut-off energy. In order to emphasise the need to use the full c-dependence of the 
Pulay stress if accurate physical properties are to be obtained, figure 2 and table 1 include 
the results of correcting the calculated stress with a constant Pulay stress corresponding 
to a single evaluation of equation (6) at the equilibrium lattice parameter. 

3. Total energy calculations 

The simultaneous calculation of the total energy Etot(c, NPW(c, E,,,)) provides an inde- 
pendent determination of the equilibrium properties. Figure 5 shows the calculated total 
energy curve using a fixed cut-off energy E,,, = 125 eV and 14 equally weighted k- 
points. The following two features of the figure, which become more striking at lower 
cut-off energies (Dacosta et a1 1986), merit particular attention. 

Firstly, while one would expect a real material to possess a smooth total energy curve 
as a function of lattice parameter, this curve is very ragged. The reason for this is 
qualitatively well understood (Dacosta et a1 1986). Whenever the number of basis states 
increases discontinuously, as it must if a finite k-point set is used, the total ecergy will 
fall abruptly due to the increased variational freedom of the wavefunction. The second 
important feature of figure 5 is that in ranges of c where the number of plane waves is 
constant, Etot(c, NpW) exhibits a locally increased gradient, corresponding to the Pulay 
stress defined in section 2. We wish to correct the total energy curve by eliminating the 
errors introduced by these two features. 

At each k-point k we must relate the calculated energy Etot(c, NEW (c, E,,,)) to the 
required energy Etot (c ,  E,,,), assumed differentiable, where NLW (c, E,,,) is defined 
according to equation (1). The total differential of the calculated energy is 

dE:ot ( c ,  NLW(c, Emax)) = (aEfot/ac),LW dc  + (aE:ot/JNLW)c dNkPW 

(aEtot(C, NLW/aNEW)c dNkPW = ( a E t o t ( ~ ,  Emax)/aLax)c (aEmax/aNiW)c dNLW 

(7) 
and we have also that 

(8) 
where Emax(c, Npw) is defined by equations (3) and (4). We can now integrate equation 
( 7 )  by using equations ( 5 ) ,  (6) and (8) to give 
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Figure 5. The calculated (uncorrected) total 
energy determined as a function of lattice par- 
ameter, using a constant cut-off energy E,,, = 
125 eV and 14 equally weighted k-points. The full 
curve represents the least-squares parabolic fit to 
the data. 
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Figure 6. The corrected total energy determined 
as a function of lattice parameter, using a constant 
cut-off energy E,,, = 125 eV and 14 equally 
weighted k-points, shown with its least-squares 
parabolic fit. The uncorrected best fit curve 
(broken curve) is included for comparison. 

where we have assumed only that dE:,t/dEm,, is independent of c. This approximation 
is easily checked and found to be valid to within about 1% at 125 eV over a 10% range 
of lattice parameter. 

Summing over weighted special k-points we finally find 

where we have further assumed that d Efot/a E,,, is also independent of k. Clearly the 
closer we are to convergence of energy differences the better will be our approximation. 
At E,,, = 125 eV the assumed k-independence is found to be valid to within a few 
percent. When we are close to convergence of energy differences, the derivative in (10) 
will be very nearly independent of c and so can be determined for all values of c from 
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Table 2. The comparison of equilibrium properties determined from the behaviour of the 
total energy, as a function of the lattice parameter c, with the experimental values. The total 
energies were calculated using E,,, = 125 eV and 14 equally weighted k-points, and were 
corrected according to equation (10). 

Equilibrium Equilibrium 
lattice constant Young modulus 

Method (4 (GPa) 

Experiment 5.65 131 
Calculated energy 5.57 ? 0.01 160 2 10 
Corrected energy 5.57 * 0.01 129 ? 2 

calculations of Etot(E,,,) at one or two values of c. Alternatively, when a total energy 
curve is available, the derivative may be treated as a fitting parameter and estimated by 
optimising the smoothness of the corrected energy curve. 

A test of the validity of these assumptions at any cut-off energy is whether the 
parameter-free expression (10) yields smooth calculated Elot(c, E,,,) curves. Figure 6 
shows the curve obtained for E,,, = 125 eV. The curve is indeed remarkably smooth to 
within the other uncertainties of the calculation, and moreover yields a value of the 
elastic constant which is within 2% of the experimental value as shown in table 2. In 
contrast, the corresponding uncorrected Etot(c, NPW(c, E,,,)) curve yields an elastic 
constant some 25% from the experimental value. That the curves in figure 6 differ 
significantly clearly shows that the earlier schemes of Yin (1985) and Denteneer and van 
Haeringen (1986) are unsatisfactory, since they rely on the ‘noise’ in the uncorrected 
curve having a random nature. 

A further test of the validity of the assumptions is provided by a comparison of 
properties calculated from the corrected energy curve with values derived from the 
corresponding corrected stress curve. Comparison of such results in tables 1 and 2 
confirms their validity. 

4. Convergence properties 

We have considered the convergence of total energy E,,, with increasing plane-wave 
cut-off energy E,,,. In most cases we are interested in the energy differences between 
different structures, rather than their absolute energies. The convergence of energy 
differences occurs at a much smaller cut-off energy than that required for absolute 
convergence. This is understood to be due to the higher plane waves changing the 
electronic wavefunctions only within the ion cores and not in the bonding regions. Once 
the cut-off energy is sufficiently large that this regime is reached, further increasing E,,, 
will merely decrease the total energy of each structure by precisely the same amount. 

The important point here is that even when the cut-off energy is sufficiently large 
that energy differences in Elot(c, E,,,) have converged, with dE,,,(c, E,,,)/d In E,,, 
therefore independent of c ,  energy differences in the calculated Etot(c, NPW(c, E,,,)) 
will not have converged since the correction term in equation (10) may still be large. 
The logarithm will always fluctuate from zero, albeit with slowly decreasing magnitude 
as E,,, increases, but the constant prefactor will only vanish when absolute energy 
convergence is achieved. Hence unless the correction is applied, calculated energy 
differences will not converge until the calculated energies themselves have converged! 
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Figure 7. The calculated and corrected total energies determined as functions of lattice 
parameter using a constant cut-off energy and 14 equally weighted k-points. Figures 7(a) 
and 7(b )  show the curves for cut-off energies of 62.5 eV and 93.75 eV respectively. In both 
cases, the fillea data points represent the corrected values while the empty ones are the 
original calculated values and the full curves are the best fit parabolae. 

In this way, the use of the correction significantly reduces the number of plane waves 
required for calculating total energy differences. 

The validity of equation (10) is measured by the smoothness of the corrected energy 
curve which it predicts. In our example, E,,, = 125 eVis adequate for the approximation 
to be valid to within the other small uncertainties of the calculation. Figure 7 shows the 
corrected curves using cut-off energies of 62.5 eV and 93.75 eV. The validity of (10) 
clearly worsens as the cut-off is reduced, but nevertheless the ‘noise’ in the corrected 
energy remains an order of magnitude less than the ‘systematic noise’ in the uncorrected 
energy. In any case it is clear that equation (10) becomes valid at much lower cut-off 
energies than those required for convergence of energy differences. 

It should be noted that while equation (10) corrects the errors due to the use of a 
finite k-point set, within the Monkhorst and Pack (1976) special k-point summation 
approximation to the Brillouin zone integration, it is necessary to perform the calculation 
with a k-point set sufficient for the assumptions inherent in equation (10) to be valid. As 
for cut-off energy, this validity may be checked for a given k-point set by determining 
the smoothness of the corrected total energy curve so predicted. In addition, it remains 
necessary to test that the k-point set is sufficient for the special k-point scheme to be a 
valid approximation. 

Other quantities such as elastic moduli will be less sensitive to small changes in energy 
differences, so that convergence of such properties may be achieved at very much 
reduced cut-off energies but only if the correction is applied. In our example good values 
of elastic moduli can be achieved with a reduction in computational time of one order 
of magnitude. Table 3 compares the convergence of an elastic modulus determined from 
corrected and uncorrected energies respectively. 
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Table 3. The convergence of equilibrium properties with increasing cut-off energy E,,,. Note 
that (i) the consistency of the stress and energy corrections improves with increasing cut-off 
energy, and that (ii) the corrected properties may take values outside the already large 
uncertaintiesin the corresponding uncorrected properties. The number of lattice parameters 
used for the stress and energy evaluations at each cut-off energy is shown in the ‘number of 
data points’ column. 

Equilibrium Young modulus (GPa) Equilibrium lattice constant (A) 
Cut-off Number 
energy of data Uncorrected Stress Energy Uncorrected Stress Energy 
(eV) points energy (corrected) (corrected) energy (corrected) (corrected) 

~ ~~ 

(tO.01) 
62 5 27 1 5 7 t 8  1 6 1 t  1 170 t 2 5 49 5 48 5 48 
93.75 26 130 t 7 143 t 1 138 5 2 5 50 5 49 5 50 

125 27 160 t 10 127 5 2  129 t 2 5 57 5 56 5 57 
130 6 1 2 7 2 9  1 2 6 t 2  122 t 2 5 61 5 58 5 60 
200 7 146 t 15 133 t 2  136 t 6 5 62 5 61 5 63 
Experiment 131 5 65 

Total 
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-21 15.75 
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Figure 8. The predicted total energies for cut- 
off energies of 125 eV (full circles) and 126 eV 
(empty circles) determined as functions of lattice 
parameter The latter curve has been shifted 
slightly in energy such that the difference between 
the curvesis due entirely to the change in the finite 
k-point set effect resulting from a change in the 
cut-off energy The shaded region emphasises the 
varying energy differences of the two curves The 

5 2 Lattice 5 8 elastic moduli calculated from the two curves dif- 
fer by about 15% parameter / A  

To emphasise the magnitude of the correction, we have calculated the total energies 
using cut-off energies of 125 eV and 126 eV respectively, assuming that their corrected 
energies are identical, in order that the difference between the curves is purely due to 
the now correctable errors resulting from the finite k-point sets used and not due 
directly to the finiteness of the cut-off energy. Figure 8 shows these curves and thereby 
demonstrates the critical sensitivity of uncorrected energy differences and elastic moduli 
to the precise value of the cut-off energy used. 

5 .  Conclusions 

We have shown that at finite plane wave cut-off energy E,,,, we can explicitly correct 
calculated energies by eliminating the errors due to the use of the finite k-point set 
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(within the special k-point scheme). The corrected energy is more physical than the 
original total energy, but will not be equal to the true total energy of the material unless 
very high E,,, is used in the calculation. However, energy differences in the corrected 
energy will always converge at a much smaller cut-off energy than that required for 
energy differences in the uncorrected energy to have converged. We can therefore 
perform accurate total energy calculations in order to determine total energy differences 
and physical properties using significantly smaller basis sets than are possible without 
applying the correction, allowing substantial savings in computer time. 

Acknowledgments 

The authors thank the Science and Engineering Research Council for a studentship 
(GPF) and for the use of the CRAY XMP at the Rutherford Appleton Laboratory 
under grant GR/E 91790. One of us (MCP) thanks the Royal Society for financial 
support. 

References 

Ceperley D M and Alder B J 1980 Phys. Reu. Lett. 45 566 
Chadi D J and Cohen M L 1973 Phys. Rev. B 8 5747 
Cheng C ,  Needs R J and Heine V 1988 J .  Phys. C: Solid State Phys. 21 1049 
Dacosta P G, Nielsen 0 H and Kunc K 1986 J .  Phys. C: Solid State Phys. 19 3163 
Denteneer P J H and van Haeringen W 1986 Phys. Rev. B 33 2831 
Froyen S and Cohen M L 1986 J .  Phys. C: Solid State Phys. 19 2623 
Landolt-Borstein New Series 1982 Numerical Data and Functional Relationships in Science and Technology 

Monkhorst H J and Pack J D 1976 Phys. Reu. B 13 5188 
Perdew P and Zunger A 1981 Phys. Reu. B 23 5048 
Pulay P 1969 Mol. Phys. 17 197 
Starkloff Th and Joannopoulos J D 1977 Phys. Reu. B 16 5212 
Vanderbilt D 1987 Phys. Reu. Lett. 59 1456 
Yin M T 1985 Proc. 17th Int. Conf. on the Physics of Semiconductors (San Francisco, 1984) (New York: 

(Berlin: Springer) 

Springer) 


